Hybrid Swarm Algorithm for Multiobjective Optimal Power Flow Problem
نویسندگان
چکیده
Optimal power flow problem plays a major role in the operation and planning of power systems. It assists in acquiring the optimized solution for the optimal power flow problem. It consists of several objective functions and constraints. This paper solves the multiobjective optimal power flow problem using a new hybrid technique by combining the particle swarm optimization and ant colony optimization. This hybrid method overcomes the drawback in local search such as stagnation and premature convergence and also enhances the global search with chemical communication signal. The best results are extracted using fuzzy approach from the hybrid algorithm solution. These methods have been examined with the power flow objectives such as cost, loss and voltage stability index by individuals and multiobjective functions. The proposed algorithms applied to IEEE 30 and IEEE 118-bus test system and the results are analyzed and validated. The proposed algorithm results record the best compromised solution with minimum execution time compared with the particle swarm optimization.
منابع مشابه
Solving Multi-objective Optimal Power Flow Using Modified GA and PSO Based on Hybrid Algorithm
The Optimal Power Flow (OPF) is one of the most important issues in the power systems. Due to the complexity and discontinuity of some parameters of power systems, the classic mathematical methods are not proper for this problem. In this paper, the objective function of OPF is formulated to minimize the power losses of transmission grid and the cost of energy generation and improve the voltage ...
متن کاملOptimal Power Flow With Four Conflicting Objective Functions Using Multiobjective Ant Lion Algorithm: A Case Study of the Algerian Electrical Network
In this study, a multiobjective optimization is applied to Optimal Power Flow Problem (OPF). To effectively achieve this goal, a Multiobjective Ant Lion algorithm (MOALO) is proposed to find the Pareto optimal front for the multiobjective OPF. The aim of this work is to reach good solutions of Active and Reactive OPF problem by optimizing 4-conflicting objective functions simultaneously. Here a...
متن کاملBat Search Algorithm Based Hybrid PSO Approaches to Optimize the Location of UPFC in Power System
FACTS devices plays a significant role to control the power flow of power transmission system. In this paper, a hybrid PSO algorithm is proposed to optimize the location of UPFC in power system. The proposed hybrid PSO algorithm has solved the formulated multiobjective optimization problem. This paper, five objective function to be considered in the form of minimization such as the fast voltage...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملMultiobjective Optimal Power Flow Using Particle Swarm Optimization
Power system must be operated in such a way that both real and reactive powers are optimized simultaneously. Reactive powers should be optimized to provide better voltage profile as well as to reduce system losses. The four objectives of minimization of fuel cost, minimization of emission, minimization of losses and increasing stability by minimizing system stability index, these are conflictin...
متن کامل